Biodegradation of methyl tert-butyl ether under various substrate conditions.
نویسندگان
چکیده
Five aerobic enrichments efficient at degrading methyl tert-butyl ether (MTBE) under different substrate conditions were developed in well-mixed reactors containing a polyethlene porous pot for biomass retention. The five substrate conditions were as follows: MTBE alone; MTBE and diethyl ether (DEE); MTBE and diisopropyl ether (DIPE); MTBE and ethanol (EtOH); and MTBE with benzene, toluene, ethylbenzene, and xylene (BTEX). All five cultures demonstrated greater than 99.9% removal of MTBE. Addition of alternative substrate was found to have no effect on the performance of the reactors. The bacterial communities of the reactors were monitored periodically by denaturing gradient gel electrophoresis (DGGE) to determine when homeostasis was achieved. Phylogenetic analysis of the excised DGGE bands was done in order to compare the bacterial community compositions of the reactors. All cultures were found to be mixed cultures, and each enrichment was shown to have a unique composition. A majority of the bands in all reactors represented a group of organisms belonging to the Cytophaga-Flexibacter-Bacterioides (C-F-B) Phylum of bacteria. This was also the only group found in all of the reactors. This study demonstrates that MTBE can be degraded effectively in bioreactors under several substrate conditions and gives insight into the microorganisms potentially involved in the process.
منابع مشابه
Rapid Biodegradation of Methyl tert-Butyl Ether (MTBE) by Pure Bacterial Cultures
Two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Bot...
متن کاملCometabolism of methyl tert-butyl ether (MTBE) with alkanes
The release of methyl tert-butyl ether (MTBE) to the environment, mainly from damaged gasoline underground storage tanks or distribution systems spills, has provoked extended groundwater pollution. Biological treatments are, in general, a good alternative for bioremediation of polluted sites; however, MTBE elimination from environment has constituted a challenge because of its chemical structur...
متن کاملThe screening of microorganisms capable of methyl tert-butyl ether (MTBE) biodegradation.
As a result of examinations carried out, 16 strains of microorganisms able to grow on mineral media with methyl tert-butyl ether as the sole source of carbon and energy were isolated. Bacteria prevailed among the isolated microorganisms. The growth of microorganisms under laboratory conditions was long and accompanied by low biomass increase. Under the conditions of the experiment, the isolated...
متن کاملMethyl tert-butyl ether (MTBE) bioremediation studies
The massive production of methyl tert-butyl ether (MTBE), a primary constituent of reformulated gasoline, combined with its mobility, persistence and toxicity, makes it an important pollutant. It was considered recalcitrant until a few years ago, but recently MTBE biodegradation in aerobic conditions has been demonstrated with both mixed and pure cultures. Mixed cultures are generally the more ...
متن کاملBiodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa.
Biodegradation of methyl tert-butyl ether (MTBE) vapors by cometabolism with gaseous hexane (n-hexane > 95%) was investigated using Pseudomonas aeruginosa utilizing short chain aliphatic hydrocarbon (C(5)-C(8)). Kinetic batch experiments showed that MTBE was degraded even when hexane was completely exhausted with a cometabolic coefficient of 1.06 ± 0.16 mg MTBE mg hexane(-1). Intermediate tert-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 35 21 شماره
صفحات -
تاریخ انتشار 2001